Воздух на мкс проверят на тяжелые изотопы. Публикации сотрудников АО «НИИхиммаш Как вырабатывается кислород на мкс

Не космонавты мы, не летчики,
Не инженеры, не врачи.
А мы водо-водопроводчики:
Мы гоним воду из мочи!
И не факиры, братцы, вроде мы,
Но, не бахвалясь, говорим:
Круговорот воды в природе мы
В системе нашей повторим!
Наука наша очень точная.
Вы только дайте мысли ход.
Мы перегоним воды сточные
На запеканки и компот!
Проехав все дороги Млечные,
Не похудеешь вместе с тем
При полном самообеспеченьи
Наших космических систем.
Ведь даже торты превосходные,
Люля кебаб и калачи
В конечном счете - из исходного
Материала и мочи!
Не откажите ж, по возможности,
Когда мы просим по утрам
Наполнить колбу в общей сложности
Хотя бы каждый по сто грамм!
Должны по-дружески признаться мы,
Что с нами выгодно дружить:
Ведь без утили-тилизации
На белом свете не прожить!!!


(Автор - Варламов Валентин Филиппович - псевдоним В.Вологдин)

Вода–основа жизни. На нашей планете уж точно. На какой нибудь «Гамма-Центавра» возможно всё по другому. С наступлением эпохи освоения космоса, значение воды для человека лишь возросло. От Н2О в космосе зависит очень многое, начиная от работы самой космической станции и заканчивая выработкой кислорода. Первые космические аппараты не имели замкнутой системы «водоснабжения». Вся вода и прочие «расходники» бралась на борт изначально, еще с Земли.

«Предыдущие космические миссии – Меркурий, Джемини, Аполлон, брали с собой все необходимые запасы воды и кислорода и сбрасывали жидкие и газообразные отходы в космос» , - поясняет Роберт Багдижян (Robert Bagdigian) из Центра Маршалла .

Если сформулировать кратко: системы жизнеобеспечения космонавтов и астронавтов были «разомкнутыми» – они полагались на поддержку с родной планеты.

Про йод и КА «Апполон», роль туалетов и варианты (UdSSR or USA) утилизации отходов жизнедеятельности на ранних КА я расскажу в другой раз.


На фото: портативная система жизнеобеспечения экипажа «Аполлон-15», 1968 г.

Оставив рептилоида я подплыл к шкафчику санитарных средств. Повернувшись спиной к счетчику, достал мягкий гофрированный шланг, расстегнул брюки.
– Потребность в удалении отходов?
Господи…
Отвечать я, конечно, не стал. Включил отсос, и попытался забыть про любопытный взгляд рептилоида, буравящий спину. Ненавижу эти мелкие бытовые проблемы.

«Звёзды - холодные игрушки», С.Лукьяненко

Вернусь к воде и О2.

Сегодня на МКС частично замкнутая система регенерации воды, и я попробую рассказать о подробности (на сколько сам в этом разобрался).

Отступление:
20 февраля 1986 года вышла на орбиту советская орбитальная станция «Мир» .

Для доставки 30 000 литров воды на борт орбитальной станции «МИР» и «МКС» потребовалось бы организовать дополнительно 12 запусков транспортного корабля «Прогресс», величина полезной нагрузки которого составляет 2,5 тонны. Если принять во внимание тот факт, что «Прогрессы» оборудованы баками для питьевой воды типа «Родник» емкостью 420 л, то количество дополнительных запусков транспортного корабля «Прогресс» должно было бы увеличиться в несколько раз.



На МКС цеолитовые поглотители системы «Воздух» захватывают углекислый газ (CO2) и высвобождают его в забортное пространство. Теряемый в составе CO2 кислород восполняется за счет электролиза воды (разложения ее на водород и кислород). Этим на МКС занимается система «Электрон», расходующая 1 кг воды на человека в сутки. Водород сейчас стравливают за борт, но в перспективе он поможет превращать CO2 в ценную воду и выбрасываемый метан (CH4). И конечно, на всякий случай на борту есть кислородные шашки и баллоны.


На фото: кислородный генератор и тренажер для бега на МКС, которые вышли из строя в 2011.


На фото: астронавты налаживают систему дегазации жидкостей для биологических экспериментов в условиях микрогравитации в лаборатории «Дестини».


На фото: Сергей Крикалёв с устройством электролиза воды «Электрон»

К сожалению полного круговорота веществ на орбитальных станциях пока не достигнуто. На данном уровне технологий с помощью физико-химических методов не удается осуществить синтез белков, жиров, углеводов и других биологически активных веществ. Поэтому диоксид углерода, водород, влагосодержащие и плотные отходы жизнедеятельности космонавтов удаляются в вакуум космического пространства.


Санузел на космической станции выглядит так

В служебном модуле МКС введены и функционируют системы очистки «Воздух» и БМП, усовершенствованные системы регенерации воды из конденсата СРВ-К2М и генерации кислорода «Электрон-ВМ», а также система приема и консервации урины СПК-УМ. Производительность усовершенствованных систем увеличена более чем в 2 раза (обеспечивает жизнедеятельность экипажа до 6 человек), а энерго- и массозатраты снижены.

За пятилетний период (данные на 2006 г.) их эксплуатации регенерировано 6,8 тонны воды 2,8 тонны кислорода, что позволило уменьшить массу доставляемых на станцию грузов более, чем на 11 тонн.

Задержка с включением в состав комплекса СЖО системы регенерации воды из урины СРВ-УМ не позволила осуществить регенерацию 7 тонн воды и уменьшить массу доставки.

«Второй фронт» - американцы

Техническая вода из американского аппарат ECLSS поставляется в российскую систему и американскую OGS (Oxygen Generation System), где затем «перерабатывается» в кислород.

Процесс восстановления воды из мочи – сложная техническая задача: «Моча гораздо «грязнее» водяных испарений , - объясняет Карраскилло, - Она способна разъедать металлические детали и засорять трубы». Система ECLSS использует для очищения мочи процесс, называемый парокомпрессионная дистилляция: моча кипятится до тех пор, пока вода из неё не превратится в пар. Пар – естественно очищенная вода в парообразном состоянии (за исключением следов аммиака и других газов) – поднимается в дистилляционную камеру, оставляя концентрированную коричневую жижу нечистот и солей, которую Карраскилло милосердно называет «рассолом» (который затем выбрасывается в открытый космос). Затем пар охлаждается, и вода конденсируется. Полученный дистиллят смешивается со сконденсированной из воздуха влагой и фильтруется до состояния, пригодного для питья. Система ECLSS способна восстановить 100% влаги из воздуха и 85% воды из мочи, что соответствует суммарной эффективности около 93%.

Описанное выше, однако, относится к работе системы в земных условиях. В космосе появляется дополнительная сложность – пар не поднимается вверх: он не способен подняться в дистилляционную камеру. Поэтому в модели ECLSS для МКС «…мы вращаем дистилляционную систему для создания искусственной гравитации, чтобы разделить пары и рассол» , - поясняет Карраскилло.

Перспективы:
Известны попытки получить синтетические углеводы из продуктов жизнедеятельности космонавтов для условий космических экспедиций по схеме:

По этой схеме продукты жизнедеятельности сжигаются с образованием диоксида углерода, из которого в результате гидрирования образуется метан (реакция Сабатье). Метан может быть трансформирован в формальдегид, из которого в результате реакции поликонденсации (реакция Бутлерова) образуются углеводы-моносахариды.

Однако полученные углеводы-моносахариды представляли собой смесь рацематов - тетроз, пентоз, гексоз, гептоз, не обладающих оптической активностью.

Прим. Я даже боюсь покопаться в «вики-знаниях», чтобы вникнуть в их смысл.

Современные СЖО, после их соответствующей модернизации могут быть положены в основу создания СЖО, необходимых для освоения дальнего космоса.

Комплекс СЖО позволит обеспечить практически полное воспроизводство воды и кислорода на станции и может являться основой комплексов СЖО для намечаемых полетов к Марсу и организации базы на Луне.

Большое внимание уделяется созданию систем, обеспечивающих наиболее полный круговорот веществ. С этой целью вероятнее всего будут использовать процесс гидрирования диоксида углерода по реакции Сабатье или Боша-Будуара , которые позволят реализовать круговорот по кислороду и воде:

СО2 + 4Н2 = СН4 + 2Н2О
СО2 + 2Н2 = С + 2Н2О

В случае экзобиологического запрета выброса СН4 в вакуум космического пространства метан может быть трансформирован в формальдегид и нелетучие углеводы-моносахариды по следующим реакциям:
СН4 + О2 = СН2О + Н2О
поликонденсация
nСН2О - ? (СН2О)n
Са (ОН)2

Хочется отметить, что источниками загрязнения среды обитания на орбитальных станциях и при длительных межпланетных перелётах являются:

- конструкционные материалы интерьера (полимерные синтетические материалы, лаки, краски)
- человек (при перспирации, транспирации, с кишечными газами, при санитарно-гигиенических мероприятиях, медицинских обследованиях и др.)
- работающая электронная аппаратура
- звенья систем жизнеобеспечения (ассенизационное устройство-АСУ, кухня, сауна, душ)
и многое другое

Очевидно, что потребуется создание автоматической системы оперативного контроля и управления качеством среды обитания. Некая АСОКУКСО?

Мой младший отпрыск сегодня в школе начал сколачивание «исследовательской группы- банды» для выращивания пекинского салата в старой микроволновке. Вероятно решили себя обеспечить зеленью при путешествии на Марс. Старую микроволновку придётся покупать на AVITO, т.к. мои пока все функционируют. Не ломать ведь специально?


Прим. на фото, конечно не мой ребёнок, да и не будущая жертва эксперимента-микроволновка.

Как я и обещал marks@marks, если, что-то выйдет-фотки и результат скину на ГИК. Выращенный салат могу послать почтой РФ желающим, за отдельную плату конечно.

  • пилотируемые полёты
  • Добавить метки

    В непривычных условиях внеатмосферного полета космонавтам должны быть созданы все условия для работы и отдыха. Им нужно есть, пить, дышать, отдыхать, спать положенное время. Такие простые и обыденные для земного бытия вопросы в условиях космоса перерастают в сложные научные и технические проблемы.

    Человек может довольно долго обходиться без пищи, без воды - несколько дней. Но без воздуха он может жить лишь несколько минут. Дыхание - важнейшая функция человеческого организма. Как обеспечивается она в космическом полете?

    Свободный объем в космических кораблях невелик. как правило, имеет на борту около 9 кубических метров воздуха. А за стенками корабля - почти полный вакуум, остатки атмосферы, плотность которой в миллионы раз меньше, чем у поверхности Земли.

    9 кубометров - это все, что имеют для дыхания космонавты. Но это немало. Вопрос только в том, чем будет заполнен этот объем, чем будут дышать космонавты.

    Атмосфера, окружающая человека на Земле, в сухом состоянии содержит по весу 78,09 процента азота, 20,95 процента кислорода, 0,93 процента аргона, 0,03 процента углекислого газа. Количество других газов в ней практически незначительно.

    Такой газовой смесью привыкли дышать человек и почти все живое на Земле. Но возможности человеческого организма более широки. Из общего атмосферного давления на уровне моря на долю кислороде приходится примерно 160 миллиметров. Человек может дышать при понижении давления кислорода до 98 миллиметров ртутного столба, и лишь ниже наступает «кислородное голодание». Но возможен и другой вариант: когда содержание кислорода в воздухе больше нормы. Верхняя граница возможного для человека парциального давления кислорода проходит на уровне 425 миллиметров ртутного столба. При большей концентрации кислорода наступает кислородное отравление. Итак, возможности организма человека допускают колебания содержания кислорода примерно в 4 раза. В еще более широких пределах наш организм может переносить колебания атмосферного давления: от 160 миллиметров ртутного столба до нескольких атмосфер.

    Азот и аргон - инертная часть воздуха. В окислительных процессах принимает участие только кислород. Поэтому возникла мысль: а нельзя ли в космическом корабле заменить азот на более легкий газ, скажем, гелий. Кубический метр азота весит 1,25 килограмма, а гелия - всего 0,18 килограмма, то есть в семь раз меньше. Для космических кораблей, где на учете каждый лишний килограмм веса, это отнюдь не безразлично. Эксперименты показали, что в кислородногелиевой атмосфере человек может нормально дышать. Это было проверено американскими акванавтами при длительных подводных погружениях.

    В техническом отношении привлекает внимание также одногазовая атмосфера, состоящая из чистого кислорода. В американских космических кораблях для дыхания космонавтов применяется чистый кислород при давлении около 270 миллиметров ртутного столба. При этом проще (а значит, и легче) получается аппаратура для контроля давления и поддержания состава атмосферы. Однако чистый кислород имеет свои недостатки: возникает угроза пожара на космическом корабле; длительное вдыхание чистого кислорода вызывает неприятные осложнения в дыхательных путях.

    При создании искусственной среды в отечественных космических кораблях за основу взята нормальная земная атмосфера. Специалисты, прежде всего — медики, настояли на том, чтобы на борту космических кораблей был создан уголок родной планеты с условиями, как можно более близкими к тем, которые окружают человека на Земле. Все технические выгоды, получаемые при применении одногазовой атмосферы, кислородно-гелиевой и других, были принесены в жертву ради полного комфорта для космонавтов. Все параметры очень близки к нормам той атмосферы, которой мы дышим на Земле. Они показывают, что автоматика «держит» параметры воздуха в кабине очень «жестко», стабильно. Космонавты как бы дышат чистым воздухом Земли.

    После посадки космонавтов в корабль, после герметизации его отсеков состав атмосферы в корабле начинает изменяться. Два космонавта потребляют в час около 50 литров кислорода и выделяют 80-100 граммов водяных паров, углекислый газ, летучие продукты обмена веществ и др. Тогда вступает в действие система кондиционирования, которая доводит атмосферу «до кондиции», то есть поддерживает все ее параметры на оптимальном уровне.

    В основу регенерации атмосферы положены эффективные, проверенные физические и химические процессы. Известны химические вещества, которые при соединении с водой или углекислым газом способны выделять кислород. Это надперекиси щелочных металлов - натрия, калия, лития. Чтобы при этих реакциях выделилось 50 литров кислорода - часовая потребность двух космонавтов, - необходимо 26,4 грамма воды. А выделение ее в атмосферу двумя космонавтами, как мы уже сказали, достигает 100 граммов в час.

    Часть этой воды расходуется на получение кислорода, часть сохраняется в воздухе для поддержания нормальной относительной влажности (в пределах 40-60 процентов). Лишняя же вода должна улавливаться специальными поглотителями.

    Наличие пыли, крошек, мусора в воздухе недопустимо. Ведь в невесомости все это не падает на пол, а свободно плавает в атмосфере корабля и может попадать в дыхательные пути космонавтов. Для очистки воздуха от механических загрязнений существуют специальные фильтры.

    Итак, регенерация атмосферы в корабле сводится к тому, что часть воздуха из обитаемых отсеков постоянно забирается вентилятором и проходит через ряд устройств системы кондиционирования. Там воздух очищается, доводится до нормы по химическому составу, влажности и температуре и снова возвращается в кабину космонавтов. Такая циркуляция воздуха идет постоянно, а скорость ее и эффективность работы неослабно контролируются соответствующей автоматикой.

    Например, если чрезмерно возросло содержание кислорода в атмосфере корабля, то система, контроля немедленно заметит это. Она подает соответствующие команды исполнительным органам; режим работы установки изменяется так, чтобы уменьшить выделение кислорода.

    Не космонавты мы, не летчики,
    Не инженеры, не врачи.
    А мы водо-водопроводчики:
    Мы гоним воду из мочи!
    И не факиры, братцы, вроде мы,
    Но, не бахвалясь, говорим:
    Круговорот воды в природе мы
    В системе нашей повторим!
    Наука наша очень точная.
    Вы только дайте мысли ход.
    Мы перегоним воды сточные
    На запеканки и компот!
    Проехав все дороги Млечные,
    Не похудеешь вместе с тем
    При полном самообеспеченьи
    Наших космических систем.
    Ведь даже торты превосходные,
    Люля кебаб и калачи
    В конечном счете - из исходного
    Материала и мочи!
    Не откажите ж, по возможности,
    Когда мы просим по утрам
    Наполнить колбу в общей сложности
    Хотя бы каждый по сто грамм!
    Должны по-дружески признаться мы,
    Что с нами выгодно дружить:
    Ведь без утили-тилизации
    На белом свете не прожить!!!

    (Автор - Варламов Валентин Филиппович - псевдоним В.Вологдин)

    Вода–основа жизни. На нашей планете уж точно.
    На какой нибудь «Гамма-Центавра» возможно всё по другому.
    С наступлением эпохи освоения космоса, значение воды для человека лишь возросло. От Н2О в космосе зависит очень многое, начиная от работы самой космической станции и заканчивая выработкой кислорода. Первые космические аппараты не имели замкнутой системы «водоснабжения». Вся вода и прочие «расходники» бралась на борт изначально, еще с Земли.

    «Предыдущие космические миссии – Меркурий, Джемини, Аполлон, брали с собой все необходимые запасы воды и кислорода и сбрасывали жидкие и газообразные отходы в космос» , - поясняет Роберт Багдижян (Robert Bagdigian) из Центра Маршалла .

    Если сформулировать кратко: системы жизнеобеспечения космонавтов и астронавтов были «разомкнутыми» – они полагались на поддержку с родной планеты.

    Про йод и КА «Апполон», роль туалетов и варианты (UdSSR or USA) утилизации отходов жизнедеятельности на ранних КА я расскажу в другой раз.

    На фото: портативная система жизнеобеспечения экипажа «Аполлон-15», 1968 г.

    Оставив рептилоида я подплыл к шкафчику санитарных средств. Повернувшись спиной к счетчику, достал мягкий гофрированный шланг, расстегнул брюки.
    – Потребность в удалении отходов?
    Господи…
    Отвечать я, конечно, не стал. Включил отсос, и попытался забыть про любопытный взгляд рептилоида, буравящий спину. Ненавижу эти мелкие бытовые проблемы. Но что поделаешь, если у нас нет искусственной гравитации.

    «Звёзды - холодные игрушки», С.Лукьяненко

    Вернусь к воде и О2.

    Сегодня на МКС частично замкнутая система регенерации воды, и я попробую рассказать о подробности (на сколько сам в этом разобрался).

    Для доставки 30 000 литров воды на борт орбитальной станции «МИР» и «МКС» потребовалось бы организовать дополнительно 12 запусков транспортного корабля «Прогресс», величина полезной нагрузки которого составляет 2,5 тонны. Если принять во внимание тот факт, что «Прогрессы» оборудованы баками для питьевой воды типа «Родник» емкостью 420 л, то количество дополнительных запусков транспортного корабля «Прогресс» должно было бы увеличиться в несколько раз.


    На МКС цеолитовые поглотители системы «Воздух» захватывают углекислый газ (CO2) и высвобождают его в забортное пространство. Теряемый в составе CO2 кислород восполняется за счет электролиза воды (разложения ее на водород и кислород). Этим на МКС занимается система «Электрон», расходующая 1 кг воды на человека в сутки. Водород сейчас стравливают за борт, но в перспективе он поможет превращать CO2 в ценную воду и выбрасываемый метан (CH4). И конечно, на всякий случай на борту есть кислородные шашки и баллоны.

    На фото: кислородный генератор и тренажер для бега на МКС, которые вышли из строя в 2011.


    На фото: астронавты налаживают систему дегазации жидкостей для биологических экспериментов в условиях микрогравитации в лаборатории «Дестини».


    На фото: Сергей Крикалёв с устройством электролиза воды «Электрон»

    К сожалению полного круговорота веществ на орбитальных станциях пока не достигнуто. На данном уровне технологий с помощью физико-химических методов не удается осуществить синтез белков, жиров, углеводов и других биологически активных веществ. Поэтому диоксид углерода, водород, влагосодержащие и плотные отходы жизнедеятельности космонавтов удаляются в вакуум космического пространства.

    Санузел на космической станции выглядит так

    В служебном модуле МКС введены и функционируют системы очистки «Воздух» и БМП, усовершенствованные системы регенерации воды из конденсата СРВ-К2М и генерации кислорода «Электрон-ВМ», а также система приема и консервации урины СПК-УМ. Производительность усовершенствованных систем увеличена более чем в 2 раза (обеспечивает жизнедеятельность экипажа до 6 человек), а энерго- и массозатраты снижены.

    За пятилетний период (данные на 2006 г.) их эксплуатации регенерировано 6,8 тонны воды 2,8 тонны кислорода, что позволило уменьшить массу доставляемых на станцию грузов более, чем на 11 тонн.
    Задержка с включением в состав комплекса СЖО системы регенерации воды из урины СРВ-УМ не позволила осуществить регенерацию 7 тонн воды и уменьшить массу доставки.

    «Второй фронт»- американцы.

    Техническая вода из американского аппарат ECLSS поставляется в российскую систему и американскую OGS (Oxygen Generation System), где затем «перерабатывается» в кислород.

    Процесс восстановления воды из мочи – сложная техническая задача: «Моча гораздо «грязнее» водяных испарений , - объясняет Карраскилло, - Она способна разъедать металлические детали и засорять трубы». Система ECLSS использует для очищения мочи процесс, называемый парокомпрессионная дистилляция: моча кипятится до тех пор, пока вода из неё не превратится в пар. Пар – естественно очищенная вода в парообразном состоянии (за исключением следов аммиака и других газов) – поднимается в дистилляционную камеру, оставляя концентрированную коричневую жижу нечистот и солей, которую Карраскилло милосердно называет «рассолом» (который затем выбрасывается в открытый космос). Затем пар охлаждается, и вода конденсируется. Полученный дистиллят смешивается со сконденсированной из воздуха влагой и фильтруется до состояния, пригодного для питья. Система ECLSS способна восстановить 100% влаги из воздуха и 85% воды из мочи, что соответствует суммарной эффективности около 93%.
    Описанное выше, однако, относится к работе системы в земных условиях. В космосе появляется дополнительная сложность – пар не поднимается вверх: он не способен подняться в дистилляционную камеру. Поэтому в модели ECLSS для МКС «…мы вращаем дистилляционную систему для создания искусственной гравитации, чтобы разделить пары и рассол» , - поясняет Карраскилло.

    Перспективы:
    Известны попытки получить синтетические углеводы из продуктов жизнедеятельности космонавтов для условий космических экспедиций по схеме:

    По этой схеме продукты жизнедеятельности сжигаются с образованием диоксида углерода, из которого в результате гидрирования образуется метан (реакция Сабатье). Метан может быть трансформирован в формальдегид, из которого в результате реакции поликонденсации (реакция Бутлерова) образуются углеводы-моносахариды.

    Однако полученные углеводы-моносахариды представляли собой смесь рацематов - тетроз, пентоз, гексоз, гептоз, не обладающих оптической активностью.
    Прим. Я даже боюсь покопаться в «вики-знаниях», чтобы вникнуть в их смысл.

    Современные СЖО, после их соответствующей модернизации могут быть положены в основу создания СЖО, необходимых для освоения дальнего космоса.
    Комплекс СЖО позволит обеспечить практически полное воспроизводство воды и кислорода на станции и может являться основой комплексов СЖО для намечаемых полетов к Марсу и организации базы на Луне.




    Большое внимание уделяется созданию систем, обеспечивающих наиболее полный круговорот веществ. С этой целью вероятнее всего будут использовать процесс гидрирования диоксида углерода по реакции Сабатье или Боша-Будуара , которые позволят реализовать круговорот по кислороду и воде:

    СО2 + 4Н2 = СН4 + 2Н2О
    СО2 + 2Н2 = С + 2Н2О

    В случае экзобиологического запрета выброса СН4 в вакуум космического пространства метан может быть трансформирован в формальдегид и нелетучие углеводы-моносахариды по следующим реакциям:

    СН4 + О2 = СН2О + Н2О
    поликонденсация
    nСН2О - ? (СН2О)n
    Са (ОН)2

    Хочется отметить, что источниками загрязнения среды обитания на орбитальных станциях и при длительных межпланетных перелётах являются:
    -конструкционные материалы интерьера (полимерные синтетические материалы, лаки, краски)
    -человек (при перспирации, транспирации, с кишечными газами, при санитарно-гигиенических мероприятиях, медицинских обследованиях и др.)
    -работающая электронная аппаратура
    -звенья систем жизнеобеспечения (ассенизационное устройство-АСУ, кухня, сауна, душ)
    и многое другое

    Очевидно, что потребуется создание автоматической системы оперативного контроля и управления качеством среды обитания. Некая АСОКУКСО?

    Не зря, когда я учился, специальность по СЖО КА называлась студентами:
    ЖОПА …
    Что расшифровывалось, как:

    ж изнео беспечение п илотируемых а ппаратов

    Код точно не помню, кафедра Э4.

    Окончание: может я не всё учел и где-то перепутал факты, цифры. Тогда дополняйте, поправляйте и критикуйте.
    На это «словоблудие» меня подтолкнула интересная публикация:Овощи для астронавтов: как растят свежую зелень в лабораториях НАСА.
    Мой младший отпрыск сегодня в школе начал сколачивание «исследовательской группы- банды» для выращивания пекинского салата в старой микроволновке. Вероятно решили себя обеспечить зеленью при путешествии на Марс. Старую микроволновку придётся покупать на AVITO, т.к. мои пока все функционируют. Не ломать ведь специально?

    Прим. на фото, конечно не мой ребёнок, да и не будущая жертва эксперимента-микроволновка.

    Как я и обещал marks@marks, если, что-то выйдет-фотки и результат скину на ГИК. Выращенный салат могу послать почтой РФ желающим, за отдельную плату конечно.

    Первоисточники:

    АКТОВАЯ РЕЧЬ доктора технических наук, профессор, заслуженного деятеля науки РФ Ю.Е. СИНЯК (РАН) «СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ ОБИТАЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ
    (Прошлое, настоящее и будущее)» /Москва Октябрь 2008. Основная часть текста отсюда
    «Живая наука» (http://livescience.ru)-Регенерация воды на МКС.
    АО «НИИхиммаш» (www.niichimmash.ru). Публикации сотрудников АО «НИИхиммаш».
    Интернет-магазин «Еда космонавтов»

    Если ресурсы ограничены, то приходится работать с тем, что есть, особенно в суровых условиях космического пространства. Конечно, на МКС регулярно отправляют грузовые корабли с поставками, но для длительных миссий важна самодостаточность. Поэтому придется перерабатывать и повторно использовать драгоценные ресурсы, среди которых и кислород.

    Свежий воздух

    Сейчас ученые активно изучают как фотосинтез (процесс трансформации организмом света в энергию с побочным продуктом в виде кислорода) осуществляется в космосе. Для этого взяли микроводоросли Arthrospira (спирулина) и погрузили в фотобиореактор (цилиндр, наполненный светом). На станции углекислый газ через фотосинтез будет переходить в кислород и съедобную биомассу (белки).

    Мы знаем, как это происходит в земных условиях, но важно протестировать процесс в пространстве. Эксперимент собираются проводить в течение месяца, когда количество кислорода из водорослей изменится достаточно.

    После возвращения на Землю микроводоросли проанализируют в апреле 2018 года. Генетическая информация позволит получить более четкую картину влияния невесомости и радиации на растительную клетку. Известно, что Arthrospira наделена высокой устойчивостью к излучению, но нужно проверить ее максимальные способности.

    Проект входит в часть программы Melissa (Альтернативная система жизнеобеспечения). Она отвечает за многие исследовательские и образовательные мероприятия, вроде проекта AstroPlant – собирает сведения о росте растений в разных уголках Земли.

    Следом за этим последует проект Uriniss, изучающий рециркуляцию мочи, чтобы создать газообразный азот, энергию, потенциальные питательные вещества для растительности и воду.

    «Предыдущие космические миссии – Меркурий, Джемини, Аполлон, брали с собой все необходимые запасы воды и кислорода и сбрасывали жидкие и газообразные отходы в космос», - поясняет Роберт Багдижян (Robert Bagdigian) из Центра Маршалла. Вкратце, системы жизнеобеспечения астронавтов были «разомкнутыми» – они полагались на поддержку с Земли, что частично верно и сегодня для Международной космической станции (МКС).

    Однако для продолжительных миссий на или появляется смысл в том, чтобы замкнуть систему – то есть перерабатывать воздух и грязную воду, вместо того чтобы выбрасывать их. В ближайшее время на МКС будут проводиться испытания такой системы регенерации. Название проекта – Системы контроля среды и жизнеобеспечения (Environmental Control and Life Support Systems), более известное под аббревиатурой ECLSS. Роберт Багдижян является руководителем данного проекта.

    Система регенерации воды ECLSS

    «Русские опередили нас в этой области, - говорит Робин Карраскилло (Robyn Carrasquillo), технический руководитель проекта ECLSS, - Ещё космические аппараты «Салют» и «Мир» были способны конденсировать влагу из воздуха и использовали электролиз – пропускание электрического тока через воду – для производства кислорода». Разработанная в NASA система ECLSS будет запущена на МКС в 2008 году и пойдёт в вопросах регенерации ещё дальше – она способна получать питьевую воду не только из испарений, но и из мочи.

    Процесс восстановления воды из мочи – сложная техническая задача: «Моча гораздо «грязнее» водяных испарений, - объясняет Карраскилло, - Она способна разъедать металлические детали и засорять трубы». Система ECLSS использует для очищения мочи процесс, называемый парокомпрессионная дистилляция: моча кипятится до тех пор, пока вода из неё не превратится в пар. Пар – естественно очищенная вода в парообразном состоянии (за исключением следов аммиака и других газов) – поднимается в дистилляционную камеру, оставляя концентрированную коричневую жижу нечистот и солей, которую Карраскилло милосердно называет «рассолом» (который затем выбрасывается в открытый космос). Затем пар охлаждается, и вода конденсируется. Полученный дистиллят смешивается со сконденсированной из воздуха влагой и фильтруется до состояния, пригодного для питья. Система ECLSS способна восстановить 100% влаги из воздуха и 85% воды из мочи, что соответствует суммарной эффективности около 93%.

    Описанное выше, однако, относится к работе системы в земных условиях. В космосе появляется дополнительная сложность – пар не поднимается вверх: он не способен подняться в дистилляционную камеру. Поэтому в модели ECLSS для МКС «…мы вращаем дистилляционную систему для создания искусственной гравитации, чтобы разделить пары и рассол», - поясняет Карраскилло.

    Более того, в микрогравитации космического аппарата человеческие волосы, частицы кожи, пух и другие примеси взвешены в воздухе и не падают на пол. В связи с этим необходима внушительная система фильтрации. В конце процесса очистки в воду добавляется йод для замедления роста микробов (хлор, используемый для очистки воды на Земле, слишком химически активен и опасен для хранения в условиях космоса).

    Система регенеративного восстановления воды для МКС, имея вес около полутора тонн, будет «…производить полгаллона воды в час, что больше, чем потребности команды из трёх человек, - заявляет Карраскилло, - Это позволит космической станции непрерывно поддерживать жизнедеятельность шести астронавтов». Система разработана для производства питьевой воды «…стандарты чистоты которой выше большинства муниципальных водопроводных систем на Земле», - добавил Багдижян.

    В добавление к производству питьевой воды для экипажа, система восстановления воды будет снабжать водой другую часть ECLSS: систему генерации кислорода (oxygen generation system, OGS). Принцип действия OGS – электролиз. Молекулы воды расщепляются на кислород, необходимый для дыхания, и водород, который выводится из космического аппарата. «Цикл производства воздуха требует достаточно чистую воду, чтобы электролизные камеры не засорялись», - подчёркивает Багдижян.

    «Регенерация гораздо более эффективна, чем пополнение запасов станции с Земли», - заявляет Карраскилло, особенно после того, как закончится срок эксплуатации Шаттлов в 2010 году. Восполнение 93% грязной воды впечатляет, однако для многомесячных и многолетних миссий к Луне и Марсу, последующие версии системы ECLSS должны достигать эффективности, близкой к 100%. В таком случае астронавты будут готовы к выживанию в условиях нашей «Дюны».